A Comparison of Some Thresholding Selection Methods for Wavelet Regression

نویسنده

  • Mohd T. Ismail
چکیده

In wavelet regression, choosing threshold value is a crucial issue. A too large value cuts too many coefficients resulting in over smoothing. Conversely, a too small threshold value allows many coefficients to be included in reconstruction, giving a wiggly estimate which result in under smoothing. However, the proper choice of threshold can be considered as a careful balance of these principles. This paper gives a very brief introduction to some thresholding selection methods. These methods include: Universal, Sure, Ebays, Two fold cross validation and level dependent cross validation. A simulation study on a variety of sample sizes, test functions, signal-to-noise ratios is conducted to compare their numerical performances using three different noise structures. For Gaussian noise, EBayes outperforms in all cases for all used functions while Two fold cross validation provides the best results in the case of long tail noise. For large values of signal-to-noise ratios, level dependent cross validation works well under correlated noises case. As expected, increasing both sample size and level of signal to noise ratio, increases estimation efficiency. Keywords— wavelet regression, simulation, Threshold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Combining Wavelets Expansion and Sparse Linear Models for Regression on Metabolomic Data and Biomarker Selection

[email protected], Corresponding author 1 V er si on p re pr in t Comment citer ce document : Villa Vialaneix, N., Hernandez, N., Paris, A., Domange, C., Priymenko, N., Besse, P. (2016). On combining wavelets expansion and sparse linear models for regression on metabolomic data and biomarker selection. Communications in Statistics Simulation and Computation, 45 (1), 282-298. DOI : ...

متن کامل

A Scaling and Non-Negative Garrote in Soft-Thresholding

Soft-thresholding is a sparse modeling method typically applied to wavelet denoising in statistical signal processing. It is also important in machine learning since it is an essential nature of the well-known LASSO (Least Absolute Shrinkage and Selection Operator). It is known that soft-thresholding, thus, LASSO suffers from a problem of dilemma between sparsity and generalization. This is cau...

متن کامل

Wavelet Block Thresholding for Non-Gaussian Errors

Wavelet thresholding generally assumes independent, identically distributed normal errors when estimating functions in a nonparametric regression setting. VisuShrink and SureShrink are just two of the many common thresholding methods based on this assumption. When the errors are not normally distributed, however, few methods have been proposed. In this paper, a distribution-free method for thre...

متن کامل

2 Schur Ordering , Lorentz Curve , and Measures of Inequality 32

Discrete wavelet transformations have became indispensable analytical tools in data compression and data denoising. In this paper we give some empirical accounts of wavelet transformations and propose novel thresholding and wavelet selection methods. This is achieved via connections with measures of inequality, that have been used in economics for a long time. We compare our methods with standa...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012